L’idée nouvelle du Big Data est de rassembler la totalité des données d'usages historiques disponibles (logs, données patrimoniales, réseaux sociaux...) sans pré-formatage ou pré-filtrage, puis de traiter ces données a posteriori sur des historiques de plusieurs mois voire plusieurs années.
Le Big Data en toute sécurité
Se lancer dans un projet de Big Data dans le cloud apporte une valeur unique par rapport à des infrastructures sur site, notamment dans les étapes de stockage et d’analyse :
• Stockage élastique : le principe est d’avoir une capacité illimitée dans laquelle les clients ne paient que pour le stockage réellement utilisé, sans engagement dans le temps.
• Capacité serveurs à la demande : les clients ont accès – à la demande et en quelques minutes – à des serveurs virtualisés pour effectuer des traitements sans limite de taille. La facturation des ressources est à l’heure d’utilisation.
Ainsi, c’est dans ce domaine que les technologies élastiques proposées par le cloud computing prennent tout leur sens. L’architecture informatique élastique (stockage, serveurs…), notamment proposée par Amazon Web Services, s’adapte aux projets Big Data ponctuels ou récurrents des entreprises de toutes tailles.
Cet article propose donc un éclairage sur les fonctionnalités de sécurité natives du cloud qui permettent aux clients de garder un haut niveau de sécurité pour leurs projets Big Data.
Pourquoi sécuriser le Big Data ?
Avant de voir dans le détail les dispositifs de sécurité, regardons les enjeux et les risques contre lesquels il est important de se protéger.
Dans un projet Big Data on trouvera typiquement deux types de données :
• Une copie de données patrimoniales, comme un fichier client, un catalogue de produits… On se gardera bien évidemment de copier des données très sensibles comme des mots de passe ou des numéros de cartes de crédit ;
• Des données d’usages d’utilisateurs (privées ou publiques). Dans certains cas il est conseillé d’« anonymiser » les données afin de réduire l’exposition aux risques.
Afin de maintenir la sécurité au sein des projets Big Data, il est recommandé d’apporter une attention particulière aux domaines suivants : contrôle d’accès, isolation réseau, chiffrement des données en transit et au repos.
À noter que pour chaque type de données, il est souhaitable de faire une évaluation de sa sensibilité pour mettre en œuvre un niveau de sécurisation adéquat.
Téléchargez cette ressource
Guide inmac wstore pour l’équipement IT de l’entreprise
Découvrez les dernières tendances et solutions IT autour des univers de Poste de travail, Affichage et Collaboration, Impression et Infrastructure, et notre dossier Green IT sur les actions engagés par inmac wstore pour réduire son impact environnemental
Les articles les plus consultés
- Stockage autonome, Evolutivité & Gestion intelligente, Pure Storage offre de nouvelles perspectives aux entreprises
- ActiveViam fait travailler les data scientists et les décideurs métiers ensemble
- Intelligence Artificielle : DeepKube sécurise en profondeur les données des entreprises
- La blockchain en pratique
- Databricks lève 1 milliard de dollars !
Les plus consultés sur iTPro.fr
- L’IA profite au marché du mobile !
- La législation européenne sur l’IA entre en vigueur. Comment s’y préparer au mieux ?
- Actions pour agir face à l’impact environnemental de l’IA générative
- DORA : échéance clé du 17 janvier 2025 pour les établissements du secteur financier
- La protection des données : quelles solutions ?