> Tech > DataMarts

DataMarts

Tech - Par Renaud ROSSET - Publié le 24 juin 2010
email

A la différence d'un entrepôt, un magasin de données sert à  effectuer une ou plusieurs fonctions bien définies pour certains utilisateurs. Etant constitués de résultats précalculés et contenant généralement moins de données, les magasins de données sont beaucoup plus rapides que les entrepôts. Ce qui n'empêche pas de les installer

DataMarts

parfois sur des serveurs dédiés pour éviter la contention avec les systèmes de
production. De plus, la plupart des magasins de données pratiquent le traitement
analytique en ligne (OLAP : OnLine Analytical Processing) pour réduire les temps
de réponse. Je distingue deux types de magasins de données : d’historique et de
production.

Les magasins de données d’historique accèdent en principe aux données uniquement
à  partir d’une entrepôt de données (et pas à  partir d’un système de production)
pour révéler de vastes tendances. On pourrait par exemple utiliser un magasin
de données d’historique pour déceler des courbes, créer des profils de clients,
ou projeter des ventes d’après les chiffres précédents. Les magasins de données
d’historique stockent généralement les données dans un format “ cubique ” avec
valeurs précalculées et dimensions prédéfinies (ce type d’architecture OLAP multidimensionnelle
est également dénommée MOLAP ou MD-OLAP.)

Un cube contient une matrice d’informations précalculées et est généralement comprimé
pour éliminer les cellules vides. En raison du temps de chargement que nécessite
ce type de cube, il n’est pas pratique de procéder à  des mises à  jour régulières
de celui-ci. Par conséquent, tout traitement OLTP nécessitant les toutes dernières
données doit s’effectuer directement à  partir des fichiers de production, et non
à  partir d’un cube de données. En revanche, un magasin de données peut être rafraîchi
en permanence avec des données provenant d’un système de production. Je les appelle
alors magasins de données de production.

Les magasins de données de production utilisent les données d’un entrepôt ainsi
que celles d’un système de production pour procéder aux analyses exigeant des
données récentes. Contrairement aux magasins de données d’historique, les magasins
de données de production sont continuellement rafraîchis avec des données opérationnelles.
En général, les systèmes OLTP offrent quelques fonctionnalités analytiques, mais
en combinant les données d’historique et les données courantes, les magasins de
données de production autorisent des analyses à  la fois plus larges et plus poussées.

Il est donc logique que le magasin de données de production précède le magasin
de données d’historique : la gestion au jour le jour doit avoir priorité sur la
planification future. Mais, parfois, cette règle empirique conduit tout simplement
à  mettre en oeuvre n’importe quel magasin de données d’abord, puis à  migrer sur
un entrepôt de données ; une stratégie risquée sur le plan financier en cas de
mauvaise planification de l’architecture de l’entrepôt de données

Téléchargez cette ressource

Travail à distance – Guide complet pour les Directions IT et Métiers

Travail à distance – Guide complet pour les Directions IT et Métiers

Le travail à distance met à l'épreuve la maturité numérique des entreprises en termes de Cybersécurité, d'espace de travail, de bien-être des collaborateurs, de communication et gestion de projet à distance. Découvrez, dans ce nouveau Guide Kyocera, quels leviers activer prioritairement pour mettre en place des solutions de travail à domicile efficaces, pérennes et sécurisées.

Tech - Par Renaud ROSSET - Publié le 24 juin 2010